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Disparities in outcomes across social groups pervade human
societies and are of central interest to the social sciences. How
people treat others is known to depend on a multitude of factors
(e.g., others’ gender, ethnicity, appearance) even when these
should be irrelevant. However, despite substantial progress, much
remains unknown regarding (i) the set of mechanisms shaping
people’s behavior toward members of different social groups
and (ii) the extent to which these mechanisms can explain the
structure of existing societal disparities. Here, we show in a set
of experiments the important interplay between social perception
and social valuation processes in explaining how people treat
members of different social groups. Building on the idea that ste-
reotypes can be organized onto basic, underlying dimensions, we
first found using laboratory economic games that quantitative
variation in stereotypes about different groups’ warmth and com-
petence translated meaningfully into resource allocation behavior
toward those groups. Computational modeling further revealed
that these effects operated via the interaction of social perception
and social valuation processes, with warmth and competence exert-
ing diverging effects on participants’ preferences for equitable
distributions of resources. This framework successfully predicted
behavior toward members of a diverse set of social groups across
samples and successfully generalized to predict societal disparities
documented in labor and education settings with substantial preci-
sion and accuracy. Together, these results highlight a common set of
mechanisms linking social group information to social treatment and
show how preexisting, societally shared assumptions about differ-
ent social groups can produce and reinforce societal disparities.
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Disparities in outcomes across social groups pervade human
societies (1–6). Significant gaps have been documented in

US labor market outcomes between African Americans and
Caucasians (2); in Europe, between immigrants and those who are
native-born (3); and, in India, between high- and low-caste mem-
bers (4). Studies in medicine have found that ethnic minorities
receive less pain medication for the same condition (5). Studies in
education have found that students who are obese are evaluated as
less intelligent (6). Across the social sciences, researchers have
repeatedly shown that how people treat others depends on these
and a multitude of other factors (7). Indeed, treatment disparities
have been observed even when people explicitly reject stereotypes
about different groups (8) and in laboratory-based studies where
social group information is designed to be irrelevant (9).
Although these disparities manifest at the level of whole groups,

they are widely hypothesized to have roots in people’s everyday
behavior toward individual group members (1, 2, 7). Accordingly,
long-standing questions surrounding the mechanisms that influ-
ence people’s behavior toward members of different social groups
have been studied from a number of theoretical traditions (1, 10).
One tradition, often identified with economics, has focused on
how people treat others, including how decisions are affected by

the information people have about others and their preferences
about what happens to others, highlighting a role for social valu-
ation processes in social behavior (11–13). Another, primarily
from social psychology, has focused on factors related to how
people see others, including stereotyping, dehumanization, im-
plicit biases, and in-group favoritism, highlighting a role for social
perception processes in social behavior (14–17).
Here, we identify in a set of experiments the important interplay

between social perception and social valuation processes in guiding
people’s behavior toward different social group members. Specif-
ically, we use a computational approach that integrates behavioral
economic models of social valuation, capturing how people value
others’ outcomes (11–13), and psychological frameworks of social
perception, capturing how people see and stereotype others (18–
22), to generate insights into the mechanisms producing behavior
toward different social groups. We further show that, by capturing
this interplay, it is possible to predict treatment disparities with
high accuracy in both laboratory and field settings (a glossary of
key terms is provided in SI Appendix, Table S12).
First, social valuation captures aspects of how people treat

others. Specifically, models of social valuation account for how
people’s decisions are influenced by what will happen to them,
what will happen to others, and the relationship between the
two. A particular contribution of these models has been the
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identification of social preferences, such as preferences for equity
and reciprocity, which go beyond one’s own material self-interest
(11–13). For example, studies using economic games have shown
that people’s choices reflect a preference for equitable allocations
and an aversion to receiving either more (advantageous inequity)
or less (disadvantageous inequity) than another person (11, 12).
Although by no means the only possible approach to modeling
social behavior (23), social valuation models have been in-
strumental in investigating a host of questions regarding human
social preferences, including their developmental trajectory (24),
neurobiological basis (25), susceptibility to cultural influences
(26), and modulation by contextual factors ranging from in-group
status to reputation (12, 13), making them a strong candidate for
examining questions about the computational mechanisms through
which stereotypes impact social behavior.
Second, social perception captures aspects of how people

see others. In particular, long-standing frameworks of social
perception make it possible to translate categorical informa-
tion about a person’s social group (e.g., male, Japanese, nurse) into
dimensional stereotypes about that person’s traits, abilities, and
tendencies (18, 19, 22). Foundational work in social psychology
suggests that stereotypes are organized along core dimensions (15).
Among them, the influential stereotype content model organizes
social perception onto dimensions capturing the degrees to which
people have good intentions toward others, known as warmth (or
“valence” or “communion”), and are capable of acting on those
intentions, known as competence (or “intentionality,” “impact,” or
“agency”) (10, 22). These dimensional frameworks facilitate com-
parisons across different systems of categorization; for example,
not only whether people perceive the Irish to be warmer than the
Japanese but also whether they perceive the Irish to be warmer
than nurses or the elderly. Regardless of whether stereotype
content accurately reflects the properties of different social
groups, it has been found to be consistent across populations (27)
and is hypothesized to influence social behavior (28).
Guided by recent suggestions that social cognition and valu-

ation engage separable but interacting systems (29, 30), we in-
tegrate social perception information into social valuation
models to generate mechanistic insights into people’s behavior
toward different social groups. We first use laboratory-based eco-
nomic games to investigate how warmth and competence stereo-
types influence social valuation and to what degree it is possible to
predict people’s treatment of members of a wide variety of social
groups. We then investigate whether this framework generalizes to
field settings by asking to what degree it generates accurate out-of-
sample predictions of treatment disparities documented in edu-
cation and the labor market.

Results
Documenting Treatment Disparities in Laboratory Games. First, we
sought to capture how people treated members of a variety of
social groups in laboratory economic games (Methods and Fig.
1A). In study 1a, we recruited 304 participants from Amazon’s
Mechanical Turk (mTurk) for an extension of the widely studied
Dictator Game (DG) in which participants decided how much of
a starting endowment ($10) to share with a recipient. Across
trials, we systematically varied the social group membership of
the recipient and the costs and benefits of giving (11) (Methods
and Fig. 1B; details are provided in SI Appendix).
For each decision, participants viewed one piece of in-

formation about the recipient (e.g., “nationality: Irish”) and
multipliers on the amounts to be allocated to self and other (e.g.,
“you: $ × 3, other: $ × 1”). We selected 20 recipients based on
past research to span the warmth–competence space. Impor-
tantly, because social perception processes operate on groups
including but not limited to gender and ethnic affiliations, we
included recipients identified by other characteristics, such as
occupation, age, and health status.
To examine how well the DG, with variation in recipient identity,

captured systematic disparities, we tested to what degree recipients’
social group membership biased choice behavior at the aggregate

level. We observed a strong effect of recipient group membership
on average giving (Fig. 1C). For example, under the 1:1 exchange
rate, the mean amount given ranged from $5.05 and $4.91 to
“homeless” and “elderly,” respectively, to $1.85 and $1.70 to “addict”
and “lawyer,” respectively (SI Appendix, Table S2); that is, consistent
with field observations of treatment disparities, treatment of mem-
bers of different social groups was not idiosyncratic; instead, there
was a systematic effect of recipient group membership on allocation
behavior. In turn, rather than treat these effects independently (e.g.,
by postulating a “lawyer effect” or “elderly effect”), we sought to
connect social group information to decision making using a com-
bined framework of social perception and valuation.
To capture how the social groups from study 1a are perceived,

we recruited in study 1b an independent sample of mTurk par-
ticipants (n = 251), who evaluated the 20 recipients on 31 traits
taken from past studies of social perception on 0- to 100-point
scales (Fig. 1C and SI Appendix, Table S1). Consistent with past
research (18, 19, 22), a factor analysis showed that two components
emerged as the dominant factors. The first dimension included
traits related to cleverness and self-control and aligned well with
competence. The second factor included traits like friendliness and
sincerity and aligned well with warmth. For use in computational
modeling, we calculated the average rating of each recipient’s
warmth-related and competence-related traits, with each trait
weighted by its loading on the relevant dimension (SI Appendix, SI
Methods and Fig. S1). DG participants also rated each counter-
part’s overall warmth and competence following the DG; there was
striking agreement between the two sets of ratings (Fig. 1D).

Computational Decomposition of Treatment Disparities. Next, we
sought to characterize the computational underpinnings of
treatment in the DG by investigating how stereotypes impact
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Fig. 1. Documenting treatment disparities in an experimental setting. (A)
Twenty social groups selected to span the warmth–competence space. (B) DG
paradigm varying recipients as well as costs/benefits of giving, manipulated
by applying separate multiplier rates (ms/mo) on the amounts allocated to
the participant and recipient, respectively. Three exchange rates were used
(1:3, 1:1, and 3:1). (C) Each point represents the average share given to a
recipient at the indicated exchange rate. Both recipient group membership
and exchange rate significantly affected the share given, where share given
is defined as πo/(πs + πo), πo is the amount given to recipient, and πs is the
amount kept by participant (both P < 10−10). (D, Left) Social perception
ratings were elicited using a continuous scale (0–100) and factor-analyzed,
revealing dimensions of warmth and competence. (D, Right) Ratings of the
same recipients by participants in study 1a and study 1b were highly corre-
lated (warmth: r = 0.94; competence: r = 0.98). Indep., independent.
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valuation. To do this, we built upon a widely used class of social
valuation models capturing people’s attitudes toward inequity
(11–13), in which preferences are defined over one’s own payoffs
(πs), those of a counterpart (πo), and whether one faces advan-
tageous (πs > πo) or disadvantageous ðπs < πoÞ inequity in relation
to the counterpart (details are provided in SI Appendix). Rather
than being purely self-interested, participants in past studies show
an aversion to unequal distributions, although they typically show
stronger aversion to disadvantageous inequity (getting less than
the counterpart) than to advantageous inequity (getting more than
the counterpart) (11–13). Here, we investigate how stereotypes
about recipients’ social groups affect inequity aversion and to what
extent DG treatment disparities can be quantitatively predicted
using a social valuation model that incorporates these stereotypes.
We explored two possible ways in which stereotypes could

integrate with outcomes: (i) additively, such that stereotype
content and anticipated outcomes contribute independently to
valuation, similar to a lump-sum subsidy (or tax) that is added to
(or subtracted from) the giving amount regardless of the mon-
etary value of the allocations, or (ii) multiplicatively, such that
stereotype content and anticipated outcomes interact, similar to
a proportional subsidy (tax) that is multiplied by the monetary
value of the allocation (Fig. 2A and SI Appendix). Specifically,
under the additive effect, recipients are assumed to receive a
constant bonus (or penalty) c from their perceived warmth or
competence; under the multiplicative effect, perceived warmth
and competence modulate the utility weight the dictator places
on the counterpart’s payoff, such that the subjective value of
each dollar given is boosted (or discounted) by some percentage.
Critically, these two accounts make different predictions about
how choices change across our three exchange rates: The size of
a warmth or competence bonus will be preserved across ex-
change rates under the additive effect but will vary proportion-
ally with the exchange rate under the multiplicative effect.
We found that the effect of stereotyping on DG behavior was

multiplicative in nature. Specifically, although both the additive
and multiplicative models correctly predicted higher generosity
toward recipients perceived as warmer and less competent in the
DG (SI Appendix, Table S5), the best-fit model was one con-
taining only the multiplicative effect. This model robustly
explained behavior, explaining over two-thirds (68%) of the
variance in participants’ choices and significantly outperforming
both the baseline model (Fig. 2 B and C and SI Appendix, Table
S3) and the additive model, even when accounting for differ-
ences in number of parameters (SI Appendix, Figs. S2 and S3).
These results were robust to a number of variations, including
real payoffs to the participant (study 3) and analyses controlling
for age, gender, and perceived wealth (SI Appendix, Tables S3–
S5). We refer to the multiplicative model as the social
perception-weighted (SPW) model of social valuation.
Furthermore, the effects of recipients’ perceived warmth and

competence on behavior were remarkably sensitive to the type of
inequity facing the dictator. Specifically, inspection of the cali-
brated SPW model revealed a divergence in the effects of re-
cipients’ warmth and competence on participants’ attitudes
toward advantageous and disadvantageous inequity, such that
participants’ aversion to getting more than the recipient in-
creased as a function of the recipient’s perceived warmth and
their aversion to getting less than the recipient increased as a
function of the recipient’s perceived competence (Fig. 3 and SI
Appendix, Fig. S3).

Generalizability of Model Predictions Across Social Groups and
Participant Populations. We next asked to what extent findings
about one set of social groups could be generalized to predict
behavior toward members of novel groups and in new sets of
participants. In particular, there is increasing recognition that
statistically significant in-sample fit does not always translate to
out-of-sample performance, highlighting the importance of testing
models’ ability to generate robust and generalizable predic-
tions (31). For example, although an alternative model using

20 independent categorical variables to capture behavioral varia-
tion in the DG might result in excellent in-sample fit of behavior
toward the 20 recipients, such a model would have no predictive
power for behavior toward members of different social groups.
To this end, we assessed the extent to which, upon learning

how people stereotype and treat some groups (e.g., “surgeon,”
“Irish,” “Arab”), our model could accurately predict treatment
of other groups (e.g., elderly, Japanese), based on their associ-
ated stereotypes. We used a cross-validation procedure in which
models first were trained on treatment of a subset of recipients
and then generated predictions for the complementary subset of
recipients (Methods), which, by its nature, addressed potential
issues of overfitting. We found that the SPW model robustly
predicted treatment of holdout recipients, even when as few as
half of the recipients were used for training (Fig. 4 A and B).
To examine the extent to which findings generalize across

populations, study 2 tested a replication sample drawn from a
different population (University of California, Berkeley under-
graduates, n = 193) (Methods). We used model parameters
calibrated on choices of the DG participants in study 1a to
predict choices of the replication sample. Remarkably, we found
that cross-population model performance was nearly identical to
within-population performance (Fig. 4C and SI Appendix, Fig.
S5); that is, the effects of social perception on social valuation
not only replicated directionally across the two populations but
were nearly identical and statistically indistinguishable in size
(Fig. 4D and SI Appendix, Fig. S5).

Predicting Unequal Treatment in Field Data. The ability to generalize
insights from the laboratory to field settings is important for
establishing the ecological validity of the underlying models and
ultimately informing policy decisions. This is particularly important
for questions regarding treatment disparities, where there are long-
standing concerns regarding the generalizability of laboratory
paradigms of stereotyping and discrimination (32). In particular,
the presence of countervailing and amplifying forces in the field
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Fig. 2. Computational decomposition of treatment disparities. (A) Illustra-
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can mean that the effects of factors observed in the laboratory may
be a poor predictor of their impact in field settings (33).
Here, we take a step toward extending our framework to field

settings by testing its ability to make generalizable predictions
about instances of unequal treatment documented in labor and
education settings. In particular, we focused on recent literature
using randomized field experiments to provide causal evidence
of the impact of others’ social identity on how they are treated,
something that has been largely elusive when using observational
data (2, 7). For example, in experiments in which fictitious ré-
sumés were sent in response to help-wanted newspaper adver-
tisements, it was found that those with stereotypically black
names (e.g., Jamal, Lakisha) received ∼50% fewer callbacks for
interviews than those with stereotypically white names (e.g.,
Greg, Emily), even when qualifications were identical (2).
We used data from two field experiments in this literature to

test and illustrate possible applications of our approach, selected
for their inclusion of a large number of social groups. Study 4
used data from a field experiment of Canadian labor market
outcomes (34), which documented substantial variation in call-
backs to résumés sent under 44 names from 12 different gender-
ethnic categories (Fig. 5A). We elicited warmth and competence
ratings of the 44 names from an independent group of mTurk
participants (n = 119; Fig. 5B) and applied the prediction pro-
cedure outlined in Fig. 3A. We found that we were able to predict
the response rate to each name at rates significantly above chance,
even when holding out more than out half of targets (Methods and
Fig. 5 C and D). Moreover, the size and direction of these effects
were consistent with those in the DG; warmth was approximately
threefold as positive as competence was negative in determining
outcomes (Fig. 3B and SI Appendix, Table S9).
Study 5 repeated this procedure using data from a study

measuring response rates of professors in US higher education
institutions to mentoring requests from prospective students
(35), which included 20 ethnic names from 10 different gender-

ethnic categories (SI Appendix, Fig. S7). Again, we found that
independent social perception ratings of these names (mTurk,
n = 199) were able to predict the response rate to each name
individually at rates significantly above chance, even when
holding out more than half of targets (SI Appendix, Fig. S7).

Discussion
Human social behavior is characterized by a concern for others’
welfare, a long-celebrated feature of human sociality that has been
subject to intense study across the biological and social sciences
(11, 36). However, people do not extend this concern uniformly
(1, 2); sizeable disparities exist in how people treat members of
different social groups. When these disparities are systematic, they
sit at the center of a number of heated debates, including those
concerning labor market discrimination (1, 2) and public health
outcomes (5, 6). Although a growing body of research has pointed
to the possibility that stereotypes may contribute to these dis-
parities, it has been a challenge to characterize the role stereo-
types play in these relationships and the size of their impact on
behavior (7), leaving us far from a mechanistic understanding of
the forces shaping people’s behavior toward different social
groups and the degree to which these mechanisms are capable of
explaining the structure of societal inequities.
In studies 1–3, we shed light on the mechanisms underlying

behavior toward members of different social groups. Whereas
past research has separately documented effects of social per-
ception (e.g., stereotyping) and social valuation (e.g., equity
preferences), we show the importance of characterizing the in-
terplay of these processes in explaining and predicting social
behavior. Specifically, by integrating behavioral economic mod-
els of social valuation with psychological frameworks of social
perception, the SPW model enabled us to decompose treatment
differences across all 20 different social groups to a common set
of warmth and competence bonuses or penalties (SI Appendix,
Table S5). We showed that perceived warmth and competence
influenced behavior by amplifying or diminishing people’s con-
cerns for equity. Moreover, consistent with previous suggestions
in social psychology that warmth and competence effects depend
on whether decision makers face upward or downward status
comparisons (37), participants were particularly averse to re-
ceiving more than warm counterparts and to receiving less than
competent counterparts.
In turn, we showed that the idea of a common set of bonuses

and penalties driven by perceived warmth and competence can be
extended successfully to explain treatment effects documented in
the field. In studies 4 and 5, aggregate treatment effects in labor
and education settings could be predicted using the perceived
warmth and competence of (fictitious) job applicants and stu-
dents, respectively. This highlights the notion that stereotypes
about applicants’ warmth and competence can exert influence on
real-world behavior even when accompanied by information about
individuals’ objective qualifications (38). Interestingly, the effects
of social perception on behavior followed similar patterns in the
DG and field data, with warmth exerting approximately threefold
as much of a positive influence on giving (response rate) as com-
petence exerted negatively.

.50

.55

.60

.65

40% 60% 80%
% of training targets

(Out of 20)

O
ut

 o
f s

am
pl

e 
R

2

A

Original sample estimates
(mTurk)

R
ep

lic
at

io
n 

sa
m

pl
e 

(B
er

ke
le

y 
un

de
rg

ra
ds

)DC

Predicted share given
(using mTurk estimates)

O
bs

er
ve

d 
sh

ar
e 

gi
ve

n
(B

er
ke

le
y 

un
de

rg
ra

ds
)

 .2      .4      .6      .8
Predicted share given (LOO)

O
bs

er
ve

d 
sh

ar
e 

gi
ve

n

 R2 = 0.61  R2 = 0.70

B

 .2      .4      .6      .8

.2

.4

.8

.6

.2

.4

.8

.6

-5

0

5

-5          0 5

αw

βw
αc

α

β
βc

Fig. 4. Generalizability of SPW social valuation
framework. (A) Generalizability of SPW model
tested out-of-sample performance using a leave-
one-out (LOO) cross-validation procedure, where
one social group was held out on each iteration.
Each point represents the predicted share given to
a specific recipient at some exchange rate. (B) SPW
model predicted variation in holdout sample
names at rates significantly greater than chance
using training samples of various sizes (error
bands indicate SEM). (C ) Out-of-sample perfor-
mance was nearly identical to within-sample performance. (D) Generalizability of model trained on mTurk participant to University of California,
Berkeley undergraduate behavior (error bars indicate SEM).

Competence

M–2SD

M+2SD

M

M+1SD

M–1SD-50

0

50

-10 -5      0      5    10

U
til

ity

Warmth

-2

0

2

ef
fe

ct
 s

iz
e 

(a
.u

.)

*

αw

* *

αc βc

* *
n.s.

BA

Other – Self (πo - πs)

α + αw

β + βw

βw
-10 -5     0     5     10

Other – Self (πo - πs)

α + αcαα
β + βc

Fig. 3. Effects of social perception on inequity aversion. (A) Diverging ef-
fects of social perception dimensions on choice utility under advantageous
and disadvantageous inequity. Utility of varying levels of (dis)advantageous
inequity, at the 1:1 exchange rate, is plotted as a function of the perceived
warmth (Left) and competence (Right) of recipients’ social groups. (B)
Weights on advantageous and disadvantageous inequity were significantly
different as a function of warmth and of competence (P = 0.0068 and P =
0.0094, respectively); warmth (competence) selectively increased aversion to
advantageous (disadvantageous) inequity. *P < 0.05. n.s., not significant.

Jenkins et al. PNAS | September 25, 2018 | vol. 115 | no. 39 | 9699

EC
O
N
O
M
IC

SC
IE
N
CE

S
PS

YC
H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
10

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719452115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719452115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719452115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719452115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719452115/-/DCSupplemental


www.manaraa.com

Together, these results shed light on the mechanisms by which
preexisting, societally shared assumptions about the traits of
different social groups, regardless of their accuracy, can affect
how those groups are treated. Moreover, we find that dimensions
of social perception have quantitative structure, which enables
them to be linked meaningfully to behavior across both labora-
tory and field settings. In contrast to the possibility that people
perceive only coarse distinctions between levels of warmth or
competence, or that stereotypes have a minimal or idiosyncratic
relationship to decision making, we observed that fine-grained
differences in perceived warmth and competence were associ-
ated with reliable differences in social behavior. Moreover, the
fact that the SPW model successfully predicted treatment of
novel social counterparts across multiple types of social groups
suggests the possibility of a common structure underlying the
multitude of treatment disparities observed in human societies.
This work has a number of limitations that raise important

questions for future research. First, we do not wish to claim to
have identified the only, or even the most important, forces
underlying treatment disparities. Little is known about the pre-
dictive value of measures beyond warmth and competence, in-
cluding those drawn from other social perception frameworks
(18, 19) or as captured by implicit measures (39), or about how
these effects vary across individuals and cultures (27). For exam-
ple, warmth has been proposed to contain subdimensions of
“sociability” and “morality” (40), and much (but not all) of the
variation in perceived competence can be captured by perceptions
of the wealth of targets (SI Appendix, SI Results).
Second, as is often the case with studies of treatment disparities,

our study focused on the group membership of the recipients (2, 7,
34, 35). Important questions remain regarding the group mem-
bership of all involved, including that of the perceiver and the
relationship between the perceiver and recipient. Perceived in-
group/out-group status, for example, is known to affect a range
of social cognitive processes, including mind perception, mentalizing,
and empathy (10, 41, 42). Similarly, participants have been found
to be more altruistic toward those with whom they share de-
mographic characteristics, such as ethnicity, and even toward ex-
perimentally induced in-group members in laboratory economic
games. Moreover, individuals from disadvantaged social groups

have been found to hold biases against their own group (43).
Future studies applying our modeling framework to a greater
range of recipients selected in a data-driven manner (44); sam-
pling participants across multiple cultures, especially those outside
of the context of Western, industrialized societies; and exploring
how perceivers’ own identity influences social valuation will be
invaluable in addressing questions regarding the moderators and
generalizability of the observed effects.
Third, future work is needed to extend the current approach to

contexts involving multiple social cues. There is growing appre-
ciation of the influence of multiple group membership, or
“intersectionality,” on life outcomes, including health, education,
and employment (45). However, little is known about how con-
ventional markers of social group membership (e.g., race, gender)
quantitatively interact with each other and with other sources of
information. In addition, that social cues can affect behavior
through (at least) two distinct dimensions provides an explanation
for why certain types of signals, for example, individuating in-
formation (37, 46), may be more effective than others in miti-
gating the effects of social group information on social valuation.
For example, the field experiment literature on labor market
discrimination has documented instances where subjective in-
formation signaling conscientiousness and agreeableness was
more effective in reducing discrimination than more objective
information, such as employment history or honors (7). A better
understanding of these questions therefore has potential impli-
cations for policy as well as for long-standing questions regarding
taste-based and statistical discrimination (1, 7).
More generally, by demonstrating that it is possible to model

aspects of human social decision making with sufficient abstrac-
tion and specificity to generalize meaningfully from laboratory
behavior to predictions of outcomes in the field, the current in-
vestigation contributes to the broader effort to integrate ap-
proaches from multiple fields to understand the mechanisms
underlying human social behavior and their societal implications.
Specifically, by integrating social perception and social valuation
approaches into a computational framework, we were able to
focus on comparisons of predictive accuracy across models, side-
stepping conceptual and methodological divides between the
various social science disciplines (11, 47). Ultimately, although
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these effects reflect just one set of forces contributing to dispar-
ities at the societal level (1, 17), this general approach opens the
door to the exciting possibility of a common, quantitative frame-
work to advance scientific understanding of discrimination and
efforts to address it.

Methods
Full methodological details are provided in SI Appendix.

Participants. Across all experiments, 1,294 total individuals participated
(details are provided in SI Appendix, Table S7). The research was approved by
the Committee for Protection of Human Subjects at the University of Cal-
ifornia, Berkeley. Participants provided written informed consent before
participation.

DG. For each of 20 decisions, participants viewed the starting endowment
(“$10.00”), recipient information (e.g., “occupation: nurse”), and multipliers
on self and other amounts (3:1, 1:1, or 1:3) and indicated how much they
wished to give to the recipient.

Social Perception Ratings. In study 1b, participants provided ratings of the 20
recipients on 31 attributes drawn from existing social perception frameworks
(SI Appendix, Table S1). In studies 4 and 5, participants provided ratings of
the warmth and competence of names used in past field studies.

Social Perception Analysis. Principal components analysis with varimax rota-
tion was performed on the ratings of the 31 attributes using the “psych”

package in R. For use in computational modeling, we calculated overall
warmth and competence scores for each recipient.

DG Analysis. Choices under the baseline model are governed by the utility
function:

Uðπs, πoÞ=
�
α · πo + ð1− αÞ · πs if πs ≥ πo
β · πo + ð1− βÞ · πs otherwise,

where α and β capture the weight on counterpart payoffs under advanta-
geous and disadvantageous inequity, respectively. The additive effect is
captured by allowing the subjective value of πo to vary as a function of
warmth and competence, and the multiplicative effect is captured by
allowing weights α and β to vary as a function of warmth and competence.

Field Data Analysis. Model fitting used multiple regression of the rate of
responses on warmth and competence for each name. Out-of-sample pre-
dictions weremade by holding out some proportion of the targets, fitting the
model on the remaining targets, and then using this fitted model to predict
the response rates of the held-out targets.
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